skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Villeneuve, John-Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Post-quantum ciphers (PQC) provide cryptographic algorithms for public-key ciphers which are computationally secure against the threats from quantum-computing adversaries. Because the devices in mobile computing are limited in hardware and power, we analyze the PQC power overheads. We implement the new NIST PQCs across a range of device platforms to simulate varying resource capabilities, including multiple Raspberry Pis with different memories, a laptop, and a desktop computer. We compare the power measurements with the idle cases as our baseline and show the PQCs consume considerable power. Our results show that PQC ciphers can be feasible in the resource-constrained devices (simulated with varying Raspberry Pis in our case); while PQCs consume greater power than the classical cipher of RSA for laptop and desktop, they consume comparable power for the Raspberry Pis. 
    more » « less